Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture
نویسندگان
چکیده
In this paper, we propose a deep learning-based vehicle trajectory prediction technique which can generate the future trajectory sequence of the surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short term memory (LSTM)-based encoder and generates the future trajectory sequence using the LSTM-based decoder. This structure produces the K most likely trajectory candidates over occupancy grid map by employing the beam search technique which keeps the K locally best candidates from the decoder output. The experiments conducted on highway traffic scenarios show that the prediction accuracy of the proposed method is significantly higher than the conventional trajectory prediction techniques.
منابع مشابه
Handwriting Trajectory Recovery using End-to-End Deep Encoder-Decoder Network
In this paper, we introduce a novel technique to recover the pen trajectory of offline characters which is a crucial step for handwritten character recognition. Generally, online acquisition approach has more advantage than its offline counterpart as the online technique keeps track of the pen movement. Hence, pen tip trajectory retrieval from offline text can bridge the gap between online and ...
متن کاملInferring and Executing Programs for Visual Reasoning Supplementary Material
In all experiments our program generator is an LSTM sequence-to-sequence model [9]. It comprises two learned recurrent neural networks: the encoder receives the naturallanguage question as a sequence of words, and summarizes the question as a fixed-length vector; the decoder receives this fixed-length vector as input and produces the predicted program as a sequence of functions. The encoder and...
متن کاملDAP: LSTM-CRF Auto-encoder
The LSTM-CRF is a hybrid graphical model which achieves state-of-the-art performance in supervised sequence labeling tasks. Collecting labeled data consumes lots of human resources and time. Thus, we want to improve the performance of LSTM-CRF by semi-supervised learning. Typically, people use pre-trained word representation to initialize models embedding layer from unlabeled data. However, the...
متن کاملGenerating Text with Deep Reinforcement Learning
We introduce a novel schema for sequence to sequence learning with a Deep QNetwork (DQN), which decodes the output sequence iteratively. The aim here is to enable the decoder to first tackle easier portions of the sequences, and then turn to cope with difficult parts. Specifically, in each iteration, an encoder-decoder Long Short-Term Memory (LSTM) network is employed to, from the input sequenc...
متن کاملDecomposing Motion and Content for Natural Video Sequence Prediction
We propose a deep neural network for the prediction of future frames in natural video sequences. To effectively handle complex evolution of pixels in videos, we propose to decompose the motion and content, two key components generating dynamics in videos. Our model is built upon the Encoder-Decoder Convolutional Neural Network and Convolutional LSTM for pixel-level prediction, which independent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.06338 شماره
صفحات -
تاریخ انتشار 2018